Непрерывность и дискретность причины возникновения мозаичности. Дискретность и непрерывность материи

С древнейших времен существовали два противоположных представления о структуре материального мира. Одно из них: континуальная концепция Анаксагора - Аристотеля - базировалось на идее непрерывности, внутренней однородности, "сплошности" и, по-видимому, было связано с непосредственными чувственными впечатлениями, которые производят вода, воздух, свет и т.п. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя не оставляет пустоты внутри себя.

Другое представление: атомистическая (корпускулярная) концепция Левкиппа - Демокрита - было основано на дискретности пространственно-временного строения материи, "зернистости" реальных объектов и отражало уверенность человека в возможность деления материальных объектов на части лишь до определенного предела - до атомов, которые в своем бесконечном разнообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира. При таком подходе необходимым условием движения и сочетания реальных атомов является существование пустого пространства. Надо признать, что корпускулярный подход оказался чрезвычайно плодотворным в различных областях естествознания. Прежде всего, это, конечно, относится к ньютоновской механике материальных точек. Очень эффективной оказалась и основанная на корпускулярных представлениях молекулярно-кинетическая теория вещества, в рамках которой были интерпретированы законы термодинамики. Правда, механистический подход в чистом виде оказался здесь неприменимым, так как проследить за движением 1023 материальных точек, находящихся в одном моле вещества, не под силу даже современному компьютеру. Однако если интересоваться только усредненным вкладом хаотически движущихся материальных точек в непосредственно измеряемые макроскопические величины (например, давление газа на стенку сосуда), то получалось прекрасное согласие теоретических и экспериментальных результатов. Законы К. м. составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц. Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К.м. позволила, напр., объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах.

В квантовой механике довольно распространенной является ситуация, когда некоторая наблюдаемая имеет парную наблюдаемую. Например, импульс – координата, энергия – время. Такие наблюдаемые называются дополнительными или сопряженными. Ко всем им применим принцип неопределенности Гейзенберга.

Существует несколько различных эквивалентных математических описаний квантовой механики:

При помощи уравнения Шрёдингера;

При помощи операторных уравнений фон Неймана и уравнений Линдблада;

При помощи операторных уравнений Гейзенберга;

При помощи метода вторичного квантования;

При помощи интеграла по траекториям;

При помощи операторных алгебр, так называемая алгебраическая формулировка;

При помощи квантовой логики.

Дискретность и непрерывность.

Наименование параметра Значение
Тема статьи: Дискретность и непрерывность.
Рубрика (тематическая категория) История

НЕПРЕРЫВНОСТЬ И ПРЕРЫВНОСТЬ - филос. категории, характеризующие как структуру материи, так и процесс её развития. Прерывность означает ʼʼзернистостьʼʼ, дискретность пространственно-временного строения и состояния материи, составляющих её элементов, видов и форм существования, процесса движения, развития. Она основывается на делимости и определ. степени внутр.
Размещено на реф.рф
дифференцированности материи в её развитии, а также на относительно самостоят. существовании составляющих её устойчивых элементов, качественно определ. структур, напр.
Размещено на реф.рф
элементарных частиц, ядер, атомов, молекул, кристаллов, организмов, планет, общественно-экономич. формаций и т.д. Непрерывность, напротив, выражает единство, взаимосвязь и взаимообусловленность элементов, составляющих ту или иную систему. Непрерывность основывается на относит. устойчивости и неделимости объекта как качественно определённого целого. Именно единство частей целого и обеспечивает возможность самого факта существования и развития объекта как целого. Т.о., структура к.-л. предмета͵ процесса раскрывается как единство Н. и п. Напр., совр.
Размещено на реф.рф
физика показала, что свет одновременно обладает и волновыми (непрерывными) и корпускулярными (прерывными) свойствами. Прерывность обеспечивает возможность сложного, внутренне дифференцированного, разнородного строения вещей, явлений; ʼʼзернистостьʼʼ, отделёниость того или иного объекта составляет крайне важно е условие для того, чтобы элемент данной структуры выполнял определ. функцию в составе целого. Вместе с тем прерывность обусловливает возможность дополнения, а также замены и взаимозамены отд. элементов системы. Единство Н. и п. характеризует и процесс развития явлений. Непрерывность в развитии системы выражает её относит. устойчивость, пребывание в рамках данной меры. Прерывность же выражает переход системы в новое качество. Одностороннее подчёркивание только прерывности в развитии означает утверждение полного разрыва моментов и тем самым потерю связи. Признание только непрерывности в развитии ведёт к отрицанию к.-л. качеств. сдвигов и по существу к исчезновению самого понятия развития. Для метафизич. способа мышления характерно обособление Н. и п. Диалектич. материализм подчёркивает не только противоположность, но и связь, единство Н. и п., что подтверждается всœей историей науки и обществ. практики.

НЕПРЕРЫВНОСТЬ И ПРЕРЫВНОСТЬ – категории, характеризующие бытие и мышление; прерывность (дискретност ь) описывает определœенную структурность объекта͵ его ʼʼзернистостьʼʼ, его внутреннюю ʼʼсложностьʼʼ; непрерывность выражает целостный характер объекта͵ взаимосвязь и однородность его частей (элементов) и состояний. В силу этого категории непрерывности и прерывности являются взаимодополняющими при любом исчерпывающем описании объекта. Важную роль категории непрерывности и прерывности играют также при описании развития, где они превращаются соответственно в скачок и преемственность.

В силу своей философской фундаментальности категории непрерывности и прерывности подробно обсуждаются уже в греческой античности. Факт движения связывает воедино проблемы непрерывности и прерывности пространства, времени и самого движения. В 5 в. до н.э. Зенон Элейский формулирует основные апории, связанные как с дискретной, так и с непрерывной моделями движения. Зенон показал, что континуум не может состоять из бесконечно малых неделимых (из точек), т.к. тогда величина бы складывалась из невеличин, из ʼʼнулейʼʼ, что непонятно, ни из конечных, имеющих величину неделимых, т.к. в данном случае, поскольку неделимых должно быть бесконечное множество (между любыми двумя точками найдется точка), это бесконечное множество конечных величин давало бы бесконечную величину. Проблема структуры континуума представляет собой тот проблемный узел, в котором неразрывно связаны категории непрерывности и прерывности. Причем то или иное понимание континуума в античности обычно истолковывается онтологически и соотносится с космологией.

Античные атомисты (Демокрит, Левкипп, Лукреций и др.) стремятся мыслить всю сферу сущего как своеобразную смесь дискретных элементов (атомов). Но довольно быстро происходит разделœение точек зрения физических атомистов, мыслящих атомы неделимыми конечными элементами, и математических атомистов, для которых неделимые не имеют величины (точки). Последний подход успешно использует, в частности, Архимед для нахождения площадей и кубатур тел, ограниченных кривыми и неплоскими поверхностями. Абстрактно математический и физикалистский подходы еще не чересчур рельефно разделœены в античной мысли. Так, вопрос о природе треугольника, из которых в ʼʼТимееʼʼ Платона складываются многогранники элементов, остается дискуссионным (проблема в том, что здесь из плоскостей складываются трехмерные элементы, ᴛ.ᴇ. , вероятно, имеет место математический атомизм). Для Аристотеля непрерывное не может состоять из неделимых частей. Аристотель различает следующее по порядку, соприкасающееся и непрерывное. Каждое следующее в данном ряду оказывается спецификацией предыдущего. Существует следующее по порядку, но не соприкасающееся, напр.
Размещено на реф.рф
ряд натуральных чисел; соприкасающееся, но не непрерывное, напр.
Размещено на реф.рф
воздух над поверхностью воды. Стоит сказать, что для непрерывности крайне важно, чтобы границы соприкасающихся совпадали. Для Аристотеля ʼʼвсœе непрерывное делимо на части, всœегда делимыеʼʼ (Физика VI, 231b 15–17).

Еще острее вопрос о природе континуума обсуждается в средневековой схоластике. Рассматривая его в онтологической плоскости, сторонники и противники континуальной космологии относят другую возможность истолкования в сферу субъективного, только мыслимого (или чувственного). Так, Генрих Гентский утверждал, что существует собственно лишь континуум, а всœе дискретное, и прежде всœего число, получается ʼʼотрицаниемʼʼ, через проведение границ в континууме. Николай из Отрекура, напротив - считал, что хотя чувственно данный континуум и делим до бесконечности, в действительности же континуум состоит из бесконечного числа неделимых частей. Укреплению аристотелœевского подхода к континууму служили дискуссии средневековых номиналистов (У. Оккам, Григорий из Римини, Ж.Буридан и др.). ʼʼРеалистыʼʼ понимали точку как онтологическую реальность, лежащую в базе всœего сущего (Роберт Гроссетест).

Традицию физического атомизма – ʼʼлинию Демокритаʼʼ – подхватывает в 16 в. Дж.Бруно. Атомистика же Галилея в 17 в. носит явно математический характер (ʼʼлиния Архимедаʼʼ). Тела у Галилея состоят из бесконечно малых атомов и бесконечно малых промежутков между ними, линии строятся из точек, поверхности – из линий и т.д. В философии зрелого Лейбница была дана оригинальная интерпретация соотношения непрерывности и прерывности. Лейбниц разводит непрерывность и прерывность по разным онтологическим сферам. Действительное бытие – дискретно и состоит из неделимых метафизических субстанций – монад. Мир монад не дан непосредственному чувственному восприятию и открывается только размышлением. Непрерывное же является основной характеристикой лишь феноменального образа Универсума, т.к. он наличествует в представлении монады. В действительности части – ʼʼединицы бытияʼʼ, монады – предшествуют целому. В представлениях же, данных в модусе пространства и времени, целое предшествует частям, на которые это целое можно бесконечно делить. Мир непрерывного не есть мир действительного бытия, а мир лишь возможных отношений. Непрерывны пространство, время и движение. Более того, принцип непрерывности является одним из фундаментальных начал сущего. Лейбниц формулирует принцип непрерывности следующим образом: ʼʼКогда случаи (или данные) непрерывно приближаются друг к другу так, что наконец один переходит в другой, то крайне важно, чтобы и в соответствующих следствиях или выводах (или в искомых) происходило то же самоеʼʼ (Лейбниц Г.В. Соч. в 4 т., т. 1. М., 1982, с. 203– 204). Лейбниц показывает применение этого принципа в математике, физике, теоретической биологии, психологии. Проблему структуры континуума Лейбниц уподоблял проблеме свободы воли (ʼʼдва лабиринтаʼʼ). При обсуждении обоих мышление сталкивается с бесконечностью: в бесконечность уходит процесс нахождения общей меры для несоизмеримых отрезков (по алгоритму Евклида) и в бесконечность же простирается цепь детерминации лишь по видимости случайных (но на самом делœе подчиняющихся совершенной божественной воле) истин факта. Лейбницевской онтологизации границы между непрерывностью и прерывностью не суждено было стать господствующей точкой зрения. Уже X.Вольф и его ученики опять начинают дискуссии о построении континуума из точек. Кант, полностью поддерживая лейбницевский тезис о феноменальности пространства и времени, строит тем не менее континуалистскую динамическую теорию материи. Последняя существенно повлияла на Шеллинга и Гегеля, которые также выдвигали ее против атомистических представлений.

В русской философии на рубеже 19–20 вв. возникает противостояние ʼʼкульту непрерывностиʼʼ, связанное с именем математика и философа Н.В.Бугаева. Бугаев разработал систему миросозерцания, основанную на принципе разрывности как фундаментальном принципе мироздания (аритмология). В математике этому принципу соответствует теория разрывных функций, в философии – особый тип монужнологии, развитый Бугаевым. Аритмологическое мировоззрение отрицает мир как сплошность, зависящую только от самой себя и постижимую в понятиях непрерывности и детерминизма. В мире есть свобода, откровение, творчество, разрывы непрерывности – как раз те ʼʼзиянияʼʼ, которые отвергает принцип непрерывности Лейбница. В социологии аритмология в противовес ʼʼаналитическому мировоззрениюʼʼ, видящему во всœем только эволюцию, подчеркивает катастрофические аспекты исторического процесса: революции, перевороты в личной и общественной жизни. Вслед за Бугаевым подобные взгляды развивал П.А.Флоренский.

Дискретность и непрерывность. - понятие и виды. Классификация и особенности категории "Дискретность и непрерывность." 2017, 2018.

Когда исследователь достигает стадии,
на которой он перестает видеть за
деревьями лес, он слишком охотно
склоняется к разрешению этой трудности
путем перехода к изучению отдельных листьев.
Ланцет

Что такое корпускулярный и континуальный подходы к описанию различных объектов природы? Что такое поле в широком смысле слова? Для описания каких объектов применяют понятие поля? Как наглядно можно изобразить поле?

Урок-лекция

Корпускулярное и континуальное описание объектов природы . С древнейших времен существовало два противоположных представления о структуре материального мира. Одно из них - континуальная концепция Анаксагора-Аристотеля - базировалось на идее непрерывности, внутренней однородности. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя «не оставляет пустоты внутри себя».

Другое представление - атомистическая, или корпускулярная, концепция Левкиппа-Демокрита - было основано на дискретности пространственно-временнбго строения материи. Оно отражало уверенность человека в возможности деления материальных объектов на части до определенного предела - до атомов, которые в своем бесконечном многообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира. При таком подходе необходимым условием движения и сочетания реальных атомов является существование пустого пространства. Таким образом, корпускулярный мир Левкиппа - Демокрита образован двумя фундаментальными началами - атомами и пустотой, и материя при этом обладает атомистической структурой.

Смотрю на него и не вижу, а потому называю его невидимым. Слушаю его и не слышу, а потому называю его неслышимым. Пытаюсь схватить его и не достигаю, поэтому называю его мельчайшим. Не надо стремиться узнать об источнике этого, потому что это едино.

Что, на ваш взгляд, является связующим звеном между изображением на картине, цитатой и названием параграфа?

Поль Синьяк. Сосна. Сан-Тропе

Современные представления о природе микромира сочетают в себе обе концепции.

Система как совокупность частиц (корпускулярное описание) . Каким образом можно описать мир дискретных частиц на основе классических представлений?

Разберем в качестве примера Солнечную систему. В простейшей модели, когда планеты рассматривают как материальные точки, для описания достаточно задать координаты всех планет. Совокупность координат в некоторой системе отсчета обозначают следующим образом: {х 1 (t), у 1 (t), z 1 (t)}; здесь индекс i нумерует планеты, а параметр t обозначает зависимость этих координат от времени. Задание всех координат в зависимости от времени полностью определяет конфигурацию планет Солнечной системы в любой момент времени.

Если мы хотим уточнить наше описание, необходимо задать дополнительные параметры, например радиусы планет, их массы и т. д. Чем точнее мы хотим описать Солнечную систему, тем больше различных параметров для каждой планеты мы должны рассматривать.

При дискретном (корпускулярном) описании некоторой системы необходимо задать различные параметры, характеризующие каждую из составляющих системы. Если эти параметры зависят от времени, необходимо учесть эту зависимость.

Система как непрерывный объект (континуальное описание) . Обращаясь к эпиграфу в начале параграфа, рассмотрим теперь такую систему, как лес. Однако, чтобы дать характеристику лесу, довольно бессмысленно перечислять всех представителей растительного и животного мира данного леса. И не только потому, что это слишком утомительная, если вообще возможная, задача. Заготовителей древесины, грибников, военных, экологов интересуют разные сведения. Как построить адекватную модель описания данной системы?

Например, интересы лесозаготовителей можно учесть, рассмотрев среднее количество (в м 3) деловой древесины на квадратный километр леса в данном районе. Обозначим эту величину через М. Поскольку она зависит от района, который рассматривается, введем координаты х и у, характеризующие район, и обозначим зависимость М от координат как функцию М(х,у). Наконец, величина М зависит от времени (одни деревья растут, другие гниют, происходят пожары и т.д.). Поэтому для полного описания необходимо знать зависимость этой величины и от времени М(х,у,t). Тогда величины можно реально, хотя и приближенно, оценить, исходя из наблюдения за лесом.

Приведем другой пример. Течение воды представляет собой механическое перемещение частичек воды и примесей. Однако описать течение при помощи корпускулярного метода просто невозможно: в одном литре воды содержится более 10 25 молекул. Для того чтобы охарактеризовать течение воды в различных точках акватории, необходимо знать скорость, с которой перемещаются частички воды в данной точке, т. е. функцию v(х, у, z, t) (Переменная t означает, что скорость может зависеть от времени, например при повышении уровня воды во время наводнения.)

Рис. 11. Фрагмент топографической карты, на которой приведены: линии равных высот (а); изображение холмов и впадин (б)

Наглядное изображение векторного поля можно также найти на географической карте - это линии течений, которые соответствуют полю скоростей жидкости. Скорость частички воды всегда направлена по касательной к такой линии. Аналогичными линиями изображают и другие поля.

Подобное описание называют полевым, а функцию, определяющую некоторую характеристику протяженного объекта в зависимости от координат и времени, называют полем. В приведенных выше примерах функция М(х,у,t) представляет собой скалярное поле, характеризующее плотность деловой древесины в лесу, а функция v(х, у, z, t) - векторное поле, характеризующее скорость течения жидкости. Различных полей существует великое множество. Фактически, описывая любой протяженный объект как нечто непрерывное, можно ввести свое поле, и не одно.

При непрерывном (континуальном) описании некоторого протяженного объекта используют понятие поля. Поле - это некоторая характеристика объекта, выраженная как функция от координат и времени.

Наглядное изображение поля . При дискретном описании некоторой системы наглядное изображение не вызывает затруднений. Примером может быть знакомая вам схема Солнечной системы. Но как можно изобразить поле? Обратимся к топографической карте местности (рис. 11, а).

На этой карте, помимо всего прочего, приведены линии равных высот для холмов и впадин (рис 11,6).

Это и есть одно из стандартных наглядных изображений скалярного поля, в данном случае поля высоты над уровнем моря. Линии равных высот, т. е. линии в пространстве, на которых поле принимает одинаковое значение, проводятся через некоторый интервал.

Поле можно наглядно изобразить в виде линий в пространстве. Для скалярного поля линии проводят через точки, в которых значение переменной поля постоянно (линии постоянного значения поля). Для векторного поля направленные линии проводят так, что в каждой точке линии вектор, соответствующий полю в данной точке, будет касательным к этой линии.

  • На метеорологических картах проводят линии, называемые изотермами и изобарами. Каким полям соответствуют эти линии?
  • Представьте реальное поле - поле пшеницы. Под действием ветра колоски наклоняются, причем в каждой точке пшеничного поля наклон колосков разный. Придумайте поле. т. е. укажите величину, которая могла бы описать наклон колосков на пшеничном поле. Какое это поле: скалярное или векторное?
  • Планета Сатурн имеет кольца, которые при наблюдении с Земли кажутся сплошными, но на самом деле представляют собой множество мельчайших спутников, движущихся по круговым траекториям. В каких случаях целесообразно для колец Сатурна применять дискретное описание, а в каких - непрерывное?

Николай Александрович Загайнов , заведующий кафедрой,

«Народный Академический Университет Эволюции Разума», Украина.

Участник конференции

Анализ достижений и выводов фундаментальной науки по вопросу дискретности элементарных частиц. Предлагается новый вариант понимания дискретности.

Ключевые слова : дискретность, элементарные частицы, полевая и вещественная материя.

Постепенное накопление результатов опытов и наблюдений, которые классическая физика объяснить не могла, к началу ХХ века привело к кризису в фундаментальной науке. «Развитие науки показало ограниченный характер существовавшей до тех пор физической картины мира. Начался пересмотр целого ряда понятий, выработанных прежней классической физикой» . Кризис в естественнонаучной фундаментальной науке со второй половины ХХ века на фоне бурного развития прикладных направлений стал более явным. Отставание фундаментального миропонимания тормозит развитие цивилизации и приводит к неоправданно большим затратам на научные исследования. Все открытия в прикладных исследованиях сделаны случайно методом перебора вариантов. А с точки зрения научного метода, фундаментальная наука должна подсказывать прикладной науке, где искать и что предполагается обнаружить. Одна из основных проблем в науке, с точки зрения автора статьи, является недопонимание сути дискретности. Рассмотрим историю появления и развития понятия дискретность.

Дискретность (лат. слово discretus - «разделенный», «прерывистый»). Это прерывность; противопоставляется непрерывности. У древнегреческого философа Демокрита, мы можем найти гипотезы о существовании амеров (в понимании современных философов, мельчайших, точечных частей пространства), атомов (мельчайших частиц вещества, не делящихся дальше), как первоосновы мира. С появления понятий амеры и атомы начинается развитие атомизма, - как учения о дискретности строения мира.

«В основе философии Демокрита лежит учение об атомах и пустоте как двух принципах, порождающих многообразие космоса. Пустота в системе миропонимания Демокрита выступает как принцип дискретности, множества, движения атомов и как их бесконечное «вместилище». Демокрит называет пустоту небытием. Понятие бытия и небытия включены у него в более общее понятие ”то, что на самом деле”, благодаря которому реальность существования признавалась и за пустотой или небытием» . В философии Демокрита понятие ”то, что на самом деле” соответствует современному понятию «реальность», в которую равноправно входят состояния бытие и небытие или их чередование.

У другого философа античности Платона ссылок на Демокрита вообще нет, как если бы этот мыслитель и его старший современник, вовсе не существовал. «В понимании Платона небытие существует как "природа иного, т.е. как инобытие"». Платон отстаивает принцип существования

«не сущего». Небытие, как считает Платон, нельзя считать несуществующим, оно существует, хотя и в особом модусе . (Мо́дус (от лат. modus) —образ, способ, вид существования или действия чего-либо. Философ Спиноза, например, полагал, что модусы - это различные состояния, которые принимает единая субстанция).

Смысл атомистической мысли античности состояла в том, что "бытие существует не более чем небытие". Если у Платона небытие существует в порядке природы "иного", то у Демокрита оно существует как пустота. У античных атомистов пустота это - "ничто", которое более поздний философ Аристотель и идущие вслед за ним комментаторы отождествили с "пространством" или "местом". Принимая изложенное выше во внимание, мы можем сказать, что первичные онтологические структуры природознания у Платона и у Демокрита, несмотря на различия, оказываются сопоставимыми. Значит, возможно допустить, что первичный источник информации, сформировавший основы миропонимания античных мыслителей, несмотря на разницу трактовки различными философами, был единым.

Краткий вывод.

В античной атомистике существуют три варианта понимания дискретности.

  1. Дискретность как существование отдельных частиц - атомов (мельчайших частиц вещества, не делящихся дальше), как первоосновы мира.
  2. Дискретность как одновременное существование двух равноправных состояний реальности бытия - атомов и небытия - пространства или пустоты
  3. Дискретность как чередование бытия и небытия.

В 17—19 вв. идущие от античности представления об атомах как о “бытии” и об абсолютно пустом пространстве как о “небытии” порождали проблему связи атомов с континуальным (непрерывным) пространством как с простым вместилищем и связи их с континуальной физической средой. По мнению хорватского физика ХVIII века Руджера Бошковича, в этот период речь шла как бы о двух разных мирах: дискретный, структурированный мир атомов и пространства как силового поля. Одновременно формировались представления о структурированности и динамичности атомов и о дискретности пространства как “силового поля”. Атомы как бы превращались в особые точки этого пространства-поля, взаимодействие тел сводилось к движениям “эфира”, к его давлению на тела, что и составило механистическую концепцию поля.

После античных времён первое издание, содержащее термин дискретность, появилось в 1873 году в Англии, а в ХХ веке получило распространённое применение в фундаментальных и прикладных науках.

Краткий вывод.

В науке к началу ХХ века стало формироваться представление о дискретной структуре не только материи, но и пространства.

В начале XX века в ходе изучения атомов были обнаружены две группы явлений, которые невозможно было объяснить при помощи классической механики Ньютона и электродинамики Максвелла. Первая группа явлений была связана с установлением в ходе опытов двойственной природы света; вторая - с невозможностью на основе классических представлений объяснить существование устойчивых атомов, а также их оптические спектры.

В 1900 году немецкий физик Макс Планк, исходя из результатов экспериментов, высказал идею, что излучение и поглощение энергии носят дискретный характер, и что свет испускается не непрерывно (как это следовало из классической теории излучения), а дискретными порциями-квантами.

В 1905 году, развивая идею Планка, основатель релятивистской физики Альберт Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами, то есть дискретность присуща самому свету; а свет состоит из отдельных порций (дискретных частиц) - световых квантов, позднее названных фотонами. Кроме того, Эйнштейн обосновал идею квантования энергии - деление энергии на порции , т.е. идею дискретности. Несколько позже Эйнштейн обосновал дискретность электромагнитного поля и пришёл к выводу о полевой природе элементарных частиц: "... элементарные частицы материи по своей природе представляют собой не что иное, как сгущения электромагнитного поля..." .

В 1922 году американский физик Артур Комптон экспериментально доказал, что свет обладает и волновыми, и корпускулярными свойствами, то есть свет является одновременно и волной, и частицей.

В 1924 году французский физик Луи де Бройль выдвинул гипотезу о всеобщем корпускулярно-волновом дуализме, по которой не только фотоны, но и все “обыкновенные частицы” (протоны, нейтроны, электроны и т. д.) также обладают волновыми свойствами. Позднее эта гипотеза была подтверждена экспериментально.

С открытием элементарных частиц обнаружилось единство дискретной и континуальной картины мира: электроны, как и другие микрочастицы, не соответствуют классическим представлениям об элементарной частице, атоме, корпускуле, они ведут себя в одних условиях как протяженная волна, в других - как строго локализованная частица. В целом, стало очевидным, что существовавшее в атомистической натурфилософии и физике с ее атомами и корпускулами, понимание устройства мира не является раз и навсегда установленным, а отражает лишь определенный этап в понимании устройства природы.

Краткий вывод. В науке стало постепенно формироваться представление об атоме и элементарных частицах как полевоэнергетических структурах, по терминологии Эйнштейна - «кванты энергии», или, другими словами, дискретных частицах энергии.

Поскольку атомы очень малы, выводы об их устройстве можно делать, в основном, путём анализа результатов воздействия на них. Иногда результаты экспериментов вызывали новые вопросы. Одной из загадок долгое время были особенности спектра водоро-да. Вид этого спектра говорил о том, что атомы водорода излучают энергию на определенных длинах волн и не про-являются на других. Будто электроны атомов обнаруживается то в одном, то в другом месте, но ни разу не были замечены в движении между ними. Никто не мог понять, почему так происходит.

В 1913 году датский физик Нильс Бор придумал вариант решения данной проблемы и предложил дополнить планетарную модель атома Резерфорда. Суть дополнения заключается в допущении, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых, они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. В статье «О строении атомов и мо-лекул» Бор высказал предположение, что электроны перемещаются с орбиты на орбиту, исчезая на одной и мгновенно возникая на другой, не появляясь в простран-стве между ними. Эта идея была названа «квантовым скачком». По мнению Бора, «кван-товый скачок» не только удерживал электроны от катаст-рофического спирального падения на ядро, но также объяснял странности с длинами волн в спектре водорода. Электроны появлялись только на определенных орбитах, потому что только на них могли существовать. Эта догадка принесла Бору Нобелевскую премию в 1922 году, через год после Эйнш-тейна.

В 1926 году немецкий физик Вернер Гейзенберг, на основании гипотезы Луи де Бройля о всеобщем корпускулярно-волновом дуализме, создал новую дисциплину, которая получи-ла известность под названием квантовой механики. В ее основе лежал сформулированный Гейзенбергом принцип неопределенности, устанавливающий, что электрон явля-ется частицей, но такой, что ее можно описывать как волну. Неопределённость, на которой построена эта теория, состоит в том, что мы можем знать, как движется электрон в пространстве, или знать, где он находится в данный момент, но не можем знать то и другое вместе. Любая попытка определить одно, неминуемо нарушает оп-ределение другого. Это не вопрос применения более точ-ной аппаратуры, а неотъемлемое свойство Вселенной. Окончательное формирование квантовой механики, как последовательной теории, произошло после появления работ Н. Бора о принципе дополнительности.

В течение ХХ века физики изучали элементарные частицы, атомы и, в целом, материю, что отражено в учебниках, справочниках и физических энциклопедиях и опубликованных рефератах. Приведём несколько выдержек:

- «Весомая (вещественная) материя или составляющие ее элементарные частицы представляют овеществленную форму полевой материи - возбужденные состояния поля. Таким образом, элементарные частицы - это те же самые поля, только возбужденные, т.е. любая элементарная частица - это поле, находящееся в возбужденном состоянии» .

- «Существование дискретных энергетических состояний атомов является одной из самых характерных особенностей их свойств, оно доказано многочисленными опытами» ;

- «В современной физике электромагнитное поле рассматривается как особый вид материи, к которой применимы важнейшие понятия физики - энергия, импульс, масса» ;

- «Квантовая механика раскрывает два основных свойства вещества: квантованность внутриатомных процессов и волновую природу частиц» ;

- «... разделение материи на две формы - поле и вещество - оказывается довольно условным» ;

- «... поле реально существует и в этом смысле, наряду с веществом, является одним из видов материи. Поле обладает энергией, импульсом и другими физическими свойствами» ;

- «Выявление тесной взаимосвязи вещества и поля привело к углублению представлений о структуре материи. На этой основе были строго разграничены понятия вещества и материи, отождествлявшиеся в науке на протяжении многих веков. В классической физике вещество и поле физическое противопоставлялись друг другу как два вида материи, у первого из которых структура дискретна, а у второго — непрерывна. Квантовая физика, внедрившая идею двойственной корпускулярно-волновой природы любого микрообъекта, привела к нивелированию этого представления»;

- «... согласно последовательной теории поля весомую материю или составляющие её элементарные частицы также следовало бы рассматривать как особого рода "поля", или особые "состояния пространства". Однако приходится признать, что при современном состоянии физики такая идея преждевременна, так как до сих пор все направленные к этой цели усилия физиков-теоретиков терпели провал. Таким образом, теперь мы фактически вынуждены различать "материю" и "поля", хотя и можем надеяться на то, что грядущие поколения преодолеют это дуалистическое представление и заменят его единым понятием, как это тщетно пыталась сделать теория поля наших дней» ;

- «Частица представляет собой предельный случай чисто полевого образования, при стремлении массы (или заряда) этого образования к постоянной величине. В этом предельном случае происходит возникновение корпускулярно-волнового дуализма и оптико-механической аналогии в чисто полевой теории» ;

- «Компоненты вращательного (вихревого) движения, присущи всему в природе - от элементарных частиц до Вселенной. Как выяснилось, фундаментальную роль в таком движении играют поля кручения пространства - торсионные поля, определяющие структуру материи любой природы» ;

Физический вакуум - это материальная среда, представляющая квантовое поле. «Очень важную роль играет состояние поля с наименьшей энергией, которое называется вакуумом» ;

Современная теория поля придерживается материалистических взглядов на природу физического вакуума, рассматривая его как невозбужденное состояние полевой материи. Физический вакуум, представляя полевую форму материи, может оказывать давление на вещественную материю, что наблюдается экспериментально в статическом эффекте Казимира. В 2011 году была обнаружена вязкость вакуума - динамический эффект Казимира (подробно в статье "Трение космических аппаратов о флуктуации вакуума").

«Причиной эффекта Казимира являются энергетические колебания физического вакуума из-за постоянного рождения и исчезновения в нем виртуальных частиц» .

Краткие выводы

  1. Существуют две основные формы материи: поле и вещество, которым присуще свойство дискретности.
  2. Материя создана вихревыми дискретными энергетическими потоками, что, в определенной степени, отражает единство природы вещества и поля.
  3. Источником дискретных энергетических потоков (виртуальных частиц) является физический вакуум, который рассматривается как невозбужденное состояние полевой материи.

Для более ясного представления о свойствах, устройстве элементарных частиц и атомов обязательно необходимы наглядные модели. В результате физических исследований оказалось, что атом совсем не похож на модель Резерфорда - Бора. Электрон не летает вок-руг ядра, как планета вокруг Солнца, а, скорее, имеет бес-форменные очертания наподобие облака или напоминает лопасти крутящегося венти-лятора, умудряясь одновременно заполнять каждый кусо-чек пространства на своих орбитах (с одной существенной разницей, что если лопасти вентилятора только кажутся находящимися одновременно везде, электроны действи-тельно находятся сразу всюду). На практике это означает, что нельзя предсказать, где будет находиться электрон в каждый конкретный момент. «Скорлупа» ато-ма представляет собой не какую-то твердую блестящую оболочку, как порой подталкивают думать некоторые ил-люстрации, а просто наиболее удаленные от центра края этих, неясно очерченных, электронных облаков. Само об-лако — это, по существу, всего лишь зона статистической вероятности, обозначающая пространство, за пределы которого электрон очень редко выходит. Атом, если бы его можно было увидеть, скорее похож на очень нечет-ко очерченный теннисный мяч, чем на жесткий металли-ческий шар. Впрочем, он не очень похож ни на то, ни на другое, и вообще не похож ни на что из когда-либо виден-ного, и силь-но отличается от того, что мы наблюдаем вокруг. Физики поняли, что открыли мир, в кото-ром электроны могут перескакивать с орбиты на орбиту, не перемещаясь через разделяющее их про-странство. Более того, по предположению, приписываемому американскому физику Алану Лайтману (Alan Lightman) профессору Масса-чусетского технологического института, материя может возникать из физического вакуума «при условии, что она доста-точно быстро исчезает». Данная гипотеза перекликается с пониманием дискретности у Платона, как чередование бытия и инобытия.

На основании данной, нечётко описанной модели, возможно ли предложить гипотезу, объясняющую столь противоречивый образ - описание атома?

Наиболее подходящая для данного случая подсказка, по мнению автора статьи, изложена в гипотезе исследователя Ю.Г. Иванова «Мерцающий мир…». Описанный выше наглядный образ атома объясняется мерцанием или, другими словами, дискретным «появлением и исчезновением вихрей электронов с прецессионным сдвигом координат их появления в пространстве и времени» .

Именно этим процессом объясняется то, почему электроны перескакивают с орбиты на орбиту, не перемещаясь через разделяющее их про-странство. Фактически, в данной гипотезе даётся понимание дискретности, перекликающееся с представлениями античных атомистов, а именно: как появление и исчезновение, а не просто как одновременное чередование бытия и небытия - существование в атоме ядра и электрона, а между ними небытие - пустота. Создатель данной гипотезы не основал научную школу, как сообщество людей, способных практически проводить научные исследования, а не только объяснять свойства природы. Этого не произошло по объективным причинам.

Краткий вывод.

В современной науке существует вариант понимания дискретности - как появления и исчезновения элементарных частиц.

Изобразим варианты понимания дискретности более наглядно на графике.

На данном графике (рис.1)изображены два варианта дискретности.

  1. Дискретные (прерывистые) энергетические частицы - атомы, имеющие волновую природу.
  2. Дискретность как одновременное существование двух равноправных состояний реальности бытия - атомов и небытия - пространства или пустоты.

Если третий вариант дискретности, понимаемый как чередование бытия и инобытия или, другими словами, появление и исчезновение, изобразить на графике (рис.2), то наглядно видно, что частицы энергии, как волны, дискретно проявляются, а потом исчезают.

Если в природе существует именно третий вариант дискретности, то для того, чтобы появился атом, необходимо, чтобы в одной точке пространства дискретно одновременно проявились все элементарные частицы, входящие в состав данного атома. Значит, атом дискретно проявляется и исчезает. Для того, чтобы появилось вещественное мироздание, необходимо одновременное дискретное появление и исчезновение всего вещества Вселенной.

Краткий вывод:

На основании понимания дискретности как появления и исчезновения, возможно сформулировать гипотезу о дискретном появлении и исчезновении элементарных частиц, атомов и всего вещественного мироздания.

Частота появления и исчезновения вещества нашего мира должна быть достаточно высокой, потому что дискретное проявление наши органы чувств воспринимают как непрерывное существование. Например, при последовательном показе на экране кинотеатра дискретных позитивных изображений со скоростью 24 кадра в секунду, отснятых на киноплёнке, мы воспринимаем изображение как непрерывно существующее. Измерить частоту дискретного появления и исчезновения вещественного мира при помощи вещественных приборов, находящихся внутри дискретного (мерцающего) мира, невозможно, так как вещество приборов появляется и исчезает вместе с веществом всего мира.

Для принятия данной гипотезы к рассмотрению современной наукой, необходимо предложить опыт, позволяющий проверить данное предположение. Если такой опыт невозможно придумать, то данная идея также, как и идея существования всемогущего бога, существование которого невозможно доказать или опровергнуть, не будет принята. По мнению автора статьи, вполне возможно допустить, что измерить частоту дискретности или мерцания нашего земного мира можно, если наблюдатель удалиться на достаточно большое расстояние от нашей планеты.

Вывод.

Современная наука вплотную подошла к пониманию дискретности, объединяющему все три варианта её понимания, предложенных в данной статье.

Допустимо предположить, что дискретность материи необходимо понимать как появление и исчезновение элементарных частиц и атомов, созданных потоком дискретных энергетических частиц, обладающих свойством кругового вихреобразного движения (спин), появляющихся из окружающего пространства (физического вакуума), и расширению данного понятия дискретности от микроуровня элементарных частиц до макромасштабов всей материи мироздания.

Новый вариант понимания дискретности, а также выводы, предложенные в данной статье, приводят к необходимости искать новый вариант миропонимания, в базисе которого будет наука, содержащая в своей парадигме данный вариант понимания дискретности.

Существует ли в нашем мире полноценная научная школа, способная изучать мироздание, с новым миропониманием, с новой наукой и новой парадигмой, включающей постулат о дискретности, понимаемый как появление и исчезновение материи? Да, существует. Она официально зарегистрирована как «Народный Академический Университет Эволюции Разума» (НАУ ЭРА) г. Одесса, Украина. С 2011 года НАУ ЭРА действует в рамках программы ЮНЕСКО «Непрерывное образование в интересах устойчивого развития» и проекта ООН «Академическое влияние».

Фактически, коллектив НАУ ЭРА осмысливает и частично формулирует в терминах и понятиях официальной науки информацию, которую постепенно получает от основателей НАУ ЭРА - представителей научной школы предшественников, «имеющей ХХ вековую историю развития» . В состав этой научной школы входили люди, практически, из всех европейских стран, но делиться своими знаниями и достижениями с остальным человечеством по объективным причинам не могли. Такая возможность появилась только с 2000 года.

НАУ ЭРА предлагает принципиально новое мировоззрение, новое решение проблем фундаментальных и прикладных наук, а также открывает поистине фантастические перспективы и возможности перед человечеством. Коллектив Университета на основании получаемой информации формулирует основы новой науки, названной в НАУ ЭРА Аксионтологией. Данная наука изучает мир, природу, все формы жизни и человечество как единую взаимосвязанную систему. При помощи Аксионтологии можно понять суть и причины любых процессов, происходящих в мире, предсказать их развитие, дать рекомендации для правительств. Аксионтология позволяет не только объяснить устройство мироздания, но и управлять природными процессами. Люди, участвующие в программах НАУ ЭРА, имеют возможность постепенно стать разумными сотворцами сначала в рамках земного мира, а потом и в масштабах Вселенной. Именно такие цели и задачи поставил перед человечеством Высший разум - Творец нашего мироздания.

Список литературы :

  1. Ленин В.И. Полное собрание сочинений, статья «Материализм и эмпириокритицизм» т-18, стр. 326 www.vilenin.eu
  2. Реферат на тему «Взаимосвязь онтологии и физики в атомизме Демокрита на примере анализа понятия пустоты». http://www.coolreferat.com/Взаимосвязь_онтологии_и_физики_в_атомизме_Демокрита_на_примере_анализа_понятия_пустоты_часть=2
  3. Шичалин Ю.А. «Платон» // Философский энциклопедический словарь. М., 1983. С. 497.
  4. Физический энциклопедический словарь - М.: Сов. Энциклоп., 1984. - 944с.
  5. Эйнштейн А.. Собрание научных трудов. М.: Наука. 1965. Т.1. С.689
  6. Алеманов С. Б. Реферат «Полевая природа материи» http://www.scorcher.ru/art/theory/alemanov/field.htm#pole.
  1. В.Ф. Дмитриева. «Основы физики» 2001г. стр. 413
  2. Кабардин О.Ф. «Физика» 1991. С.337
  3. Сивухин Д.В. «Общий курс физики». «Электричество». 1996. Т.3. Ч.1.
  4. Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров.1983. http://dic.academic.ru/dic.nsf/enc_physics/330/ВЕЩЕСТВО
  1. Шипов Г.И. «Квантовая механика, о которой мечтал Эйнштейн, следует из теории физического вакуума». - Препринт № 20 - М.: МНТЦ ВЕНТ, 1992г.- 64 с.
  2. Шипов Г.И. «Геометрия абсолютного параллелелизма» - Ч. 1. - Препринт № 14. - М.: МНТЦ ВЕНТ, 1992г. - 62 с.
  3. Физическая энциклопедия. ФИЗИКА.
  4. Википедия. http://ru.wikipedia.org/wiki/Эффект_Казимира
  5. Ю.Г. Иванов «Мерцающий мир. Гипотеза ускользающей реальности или эволюция человека в Природе» http://bugor.lg.ua/Avtor_Uchitel/merts1.htm
  6. Шарашов В.Е. (Лиас) «Рыцари с поднятым забралом» Одесса, 2003г. ООО Автограф

Введение


ДИСКРЕТНОСТЬ И ПОЛЕ

Квантовая физика существенно расширила представление о дискретности и ее роли в физике. Сущность идеи квантования состоит в следующем: некоторые физические величины, описывающие микрообъект, в определенных условиях принимают только дискретные значения. Сначала дискретность была распространена на электро-магнитные волны.

1. Свет излучается прерывистыми порциями (квантами), энергия которых определяется формулой ∆E=hν, где h – постоянная Планка (квант действия), ν – частота света. Эту идею выдвинул М. Планк в 1900 г., чтобы объяснить законы теплового излучения. Но при этом он считал, что излучение прерывисто, а поглощение непрерывно.

2. В 1905 г. А. Эйнштейн распространил идею дискретности и на процессы поглощения, чтобы объяснить загадки фотоэффекта: существование красной границы и зависимость энергии фотоэлектрона от частоты, а не от интенсивности. Согласно Эйнштейну электроны вещества поглощают свет также порциями с энергией hν, как и при излучении. Впоследствии квант света с энергией hν назвали фотоном. Наряду с энергией фотоны переносят импульс hν/c = hk/2π (k = 2π/λ – волновое число, λ – длина волны). Более того, свет не только поглощается и испускается отдельными порциями, но и состоит из них. Это было смелое и нетривиальное обобщение. Например, мы всегда воду пьем глотками (можно сказать, порциями), но это не значит, что вода состоит из отдельных глотков.

По теории Эйнштейна электромагнитная волна выглядит как поток квантов (фотонов). Но, говоря о корпускулярных свойствах света, не нужно представлять фотоны как классические частицы-шарики. С точки зрения квантовой физики свет не бывает ни потоком классических частиц, ни классической волной, хотя в различных условиях он проявляют признаки либо того, либо другого.

Позднее поняли, что существование наименьшего значения энергии hν есть общее свойство любых колебательных процессов. В 1920-х годах было получено прямое доказательство существования фотонов. Прежде всего это проявилось в эффекте Комптона – упругом рассеянии рентгеновского излучения на свободных электронах, в результате чего происходит увеличение длины вол ны. Это явление объясняется только на языке фотонов. Возник парадокс: что такое свет – частица или волна? В 1951 г. А.Эйнштейн писал, что после 50 лет раздумий он так и не смог приблизиться к ответу на вопрос, что же такое световой квант.

3. Квантуется энергия любого микрообъекта, помещенного в ограниченное пространство, например, электрона в атоме. Но энергия свободно движущегося электрона не квантуется. Квантование означает, что электрон в атоме может иметь лишь некоторый дискретный набор ее значений. Каждое значение энергии называют энергетическим уровнем или стационарным состоянием. Находясь в этих стационарных состояниях, электроны не излучают фотоны. Переходы между уровнями называют квантовыми переходами или квантовыми скачками. При каждом таком переходе испускается или поглощается один квант света (фотон) с определенной энергией. Это утверждение называют правилом частот Бора.

Идея квантования энергии электрона в атоме была введена Н. Бором для объяснения загадочной устойчивости атомов. Правила квантования, введенные Бором, считаются одними из удивительных явлений в истории науки .

Дискретность не есть результат некоего механизма взаимодействия света с веществом – это неотъемлемое свойство самого излучения. Частота испускаемого излучения не зависит от частоты вращения электрона по орбите, а определяется разностью энергий соответствующих уровней, что и отражает дискретность процесса излучения и поглощения света атомом. Вместо непрерывного, требующего какого-то времени процесса испускания или поглощения электромагнитной волны, происходит мгновенный акт рождения или уничтожения фотона, при этом состояние атома скачкообразно меняется. Этим правилом частот объясняется не только линейчатый характер атомных спектров, но и все наблюдаемые закономерности в структуре этих спектров. Дискретность есть главная особенность явлений, происходящих на уровне микромира. Здесь бессмысленно как угодно слабо воздействовать на квантовую систему (микрообъект), поскольку до определенного момента она этого не чувствует. Но если система готова его воспринять, она скачком переходит в новое квантовое состояние. Поэтому нет смысла беспредельно уточнять наши сведения о квантовой системе – они разрушаются, как правило, сразу же после первого измерения


2 КОНТИНУАЛЬНОСТЬ В КВАНТОВОЙ МЕХАНИКЕ

Разработанная Аристотелем (384/383-322/321 гг. до н.э.), Г.Лейбницем теория континуальности целиком вытекает из гипотезы абсолютной связности и слитности мира как целого, в том числе, в топологическом смысле. Связность при этом понимается как наличное взаимодействие, взаимная обусловленность и нерасторжимость любых двух моментов существования объектов любого рода.

Континуальная концепция возродилась и закрепилась в физике в результате введения понятий электрического и магнитного полей. Она не отрицала корпускулярных взглядов на вещество, но дополняла их и расширяла общие представления о формах материи. До теории Максвелла континуальная концепция нашла воплощение в модели сплошной среды, которая может рассматриваться как предельный случай системы материальных точек. Примером движения сплошной среды является волновое движение, при этом характеристики этого движения (энергия, импульс) не локализованы, как у частицы, а непрерывно распределены в пространстве. Звуковые волны – волны в упругой среде с частотой 20-2000Гц.

Теория Максвелла, впоследствии названная классической электродинамикой, описывает качественно иной природный объект – электромагнитное поле и электромагнитные волны. Первоначально предполагалось, что распространение ЭМ волн происходит в некоторой среде, названной эфиром, однако эфир не был обнаружен экспериментально, а из теории Максвелла возможность существования ЭМ поля, как особого вида материи. Необходимо отметить, что все открытия, сделанные при развитии электродинамики, не внесли каких-либо изменений в представление о динамическом характере законов природы.

Первоначально в естествознании существовало убеждение, что взаимодействие между природными объектами осуществляется через пустое пространство. При этом пространство не принимает никакого участия в передаче взаимодействия, а само взаимодействие передается мгновенно. Такое представление о характере взаимодействия составляет суть концепции дальнодействия.

В ходе исследования свойств ЭМ поля было установлено, что скорость передачи любого сигнала не может превышать скорости света, т.е. является величиной конечной, и от концепции дальнодействия пришлось отказаться. В соответствии с альтернативной концепцией – концепцией близкодействия, в пространстве, разделяющем взаимодействующие объекты, происходит некоторый процесс, распространяющийся с конечной скоростью, т.е. взаимодействие между объектами осуществляется посредством полей, непрерывно распределенных в пространстве.

С окончательным оформлением электромагнетизма классический этап развития физики и всего естествознания завершился. Итогом этого развития стало представление о существовании двух форм материи – вещества и поля, которые считались независимыми друг от друга.

Таким образом, в науке произошла определенная переоценка основополагающих принципов, в результате которой обоснованное И.Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях. Вся обстановка в науке в начале XX в. складывалась так, что представления о дискретности и непрерывности материи получили свое четкое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки в 20-е гг. показало, что такое противопоставление является весьма условным .

В классической физике вещество всегда считалось состоящим из частиц, и потому волновые свойства казались явно чуждыми ему. Тем удивительным оказалось открытие о наличии у микрочастиц волновых свойств, первую гипотезу о существовании которых высказал в 1924г. известный французский ученый Луи де Бройль (1875-1960).

Экспериментально эта гипотеза была подтверждена в 1927г. американскими физиками К.Дэвиссоном и Л.Джермером, впервые обнаружившими явление дифракции электронов на кристалле никеля, т.е. типично волновую картину; а так же в 1948 г. советским физиком В.А.Фабрикантом. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.

Гипотеза де Бройля: Каждой материальной частице независимо от ее природы следует поставить в соответствие волну, длина которой обратно пропорциональна импульсу частицы: К = h/p, где h - постоянная Планка, р - импульс частицы, равный произведению ее массы на скорость.

Таким образом, континуальная теория приводит к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. Вещество и поле различаются по физическим характеристикам: частицы вещества обладают массой покоя, а частицы поля - нет. Вещество и поле различаются по степени проницаемости: вещество малопроницаемо, а поле проницаемо полностью. При этом каждая частица может быть описана и как волна.


3 ЕДИНСТВО ДИСКРЕТНОСТИ И КОНТИНУАЛЬНОСТИ

В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона).

Таким образом, частицы неотделимы от создаваемых ими полей и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболее важных проявлений единства прерывности и непрерывности в структуре материи.

Развитие фотонных представлений о свете привело к признанию в начале 20-х годов ХХ в. идеи корпускулярно-волнового дуализма для электромагнитного излучения (дуализм – двуединость, двойственность, дополнительность). Согласно этой идее волне с частотой ν и волновым вектором. Наглядный образ такой волны-частицы составить не удается, хотя отдельно волну или отдельно частицу мы легко себе представляем: частица – это нечто неделимое, локализованное, находится в точке; волна – ”размазана” по пространству. В обычном (классическом) понимании волны и частицы друг к другу не сводятся. Итак, «квантовая частица» – это частица которая в зависимости от процесса проявляет корпускулярные или волновые свойства .

Проблема интерпретации квантовой механики, формирование математического аппарата которой было закончено к началу 1927 г., потребовала для своего разрешения создания новых логико-методологических средств. Одним из важнейших является принцип дополнительности Н.Бора согласно которому для полного описания квантовомеханических явлений необходимо применять два взаимоисключающих ("дополнительных") набора классических понятий, совокупность которых дает исчерпывающую информацию об этих явлениях как о целостных.

Этот принцип стал ядром "ортодоксальной" (так называемой копенгагенской) интерпретации квантовой механики. С его помощью получил объяснение корпускулярно-волновой дуализм микрообъектов, долгое время не поддававшийся никакому рациональному истолкованию. Принцип дополнительности сыграл главную роль при отражении изощренных критических возражений в адрес копенгагенской интерпретации со стороны А.Эйнштейна.

Этот принцип получил широкое распространение. Его пытаются применять в психологии, биологии, этнографии, лингвистике и даже в литературе. С современной точки зрения принцип дополнительности Бора является частным случаем дополнительности между рациональными и иррациональными аспектами действительности.

Согласно принципу дополнительности было установлено, что одновременное наблюдение волновых и корпускулярных свойств невозможно, и это можно использовать для телепортации макроскопических тел. Ведь для телепортации, макроскопический объект, прежде всего, должен исчезнуть с места старта, т.е. объект должен исчезнуть для наблюдателя.

Здесь обратите внимание, что макроскопический объект, предназначенный для телепортации, является именно корпускулярным объектом, локализованным в одном определенном месте, в отличие от нелокализованных квантовых частиц, которые размазаны в пространстве.

Следовательно, если, следуя принципу дополнительности, превратить корпускулярный объект в волну, длина которой стремится к бесконечности, то для наблюдателя он просто исчезнет как корпускулярный, будучи размазанным в пространстве. Ведь невозможно одновременно наблюдать объект как корпускулу, локализованную в одном месте, и как волну, размазанную в пространстве, поскольку для этого нужны взаимоисключающие условия и приборы измерения (наблюдения). Обратное превращение волны в корпускулу произойдет при локализации объекта, или детектировании (обнаружении) его наблюдателем. Если место исчезновения (делокализации) и появления (локализации) объекта не совпадают, данный процесс можно назвать телепортацией, поскольку он удовлетворяет определению телепортации .

Еще одним фундаментом квантовой механики является «Принцип неопределенности», согласно которому некоторые пары физических величин, например, координаты и скорость, или время и энергия не могут одновременно иметь полностью определенные значения. Так чем точнее известна скорость частицы, тем больше «размазано» ее местоположение, или чем меньше время жизни возбужденного состояния атома, тем больше его ширина (разброс энергий). Считается, что неопределенность выражается в невозможности точного измерения значений пар этих величин. Актуальность неопределённости в бытии человека становится ещё более рельефной и ясной, если заметить её экзистенциальную составляющую. Положение человека, само его существование во многом является неопределённым, открытым, нерешённым и незавершённым. Стоит отметить, что понятие неопределённости присуще и современным представлениям об обществе. Так, Ж. Бодрийяр называет современные общества с их ценностями основанными на «принципе неопределённости». В такой ситуации, которую Ю. Хабермас называет «постметафизическим плюрализмом», формирование любых моральных и этических ценностей затрудняется. Отсюда становится ясной актуальность аксиологического аспекта неопределённости.

Проблема неопределённости, кроме того, раскрывается через связь с такими актуальными направлениями человеческого познания, как предсказание и прогностика. Неопределенность ярчайшим образом обнаруживает себя в вероятностном будущем, открытость которого зачастую порождает состояние экзистенциального ужаса, «футурошока» (Э. Тоффлер). Кроме того, по мнению многих именно сейчас многие культуры и цивилизации находятся в кризисном состоянии, вблизи от критических точек развития. Неопределённость в таких точках становится максимальной, что придаёт проблеме особую актуальность. Кроме того, особым образом можно выделить взаимосвязь неопределённости с феноменом маргинальности, так как неоднозначное бытийное положение человека во многом является следствием данного явления.

Слова «неопределённость» и «определённость» сами по себе являются не более чем пустыми абстракциями, которые могут быть применены для обозначения или характеристики огромного круга явлений. Безусловно важным, поэтому, для прояснения смысла неопределённости, является изучение этимологических корней слова и его взаимосвязи с близкими по смыслу и коррелятивными терминами. П. А. Флоренскому принадлежит анализ связанного с понятиями «неопределённость» и «определённость» слова «термин», выявляющий единый корень в их составе и связывающий неопределённость с проблемой онтологически обусловленных границ бытия человека.

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг» .


ЗАКЛЮЧЕНИЕ

Всю историю физики, лежащей в основе естествознания, можно условно разделить на три основных этапа. Первый этап – древний и средневековый. Это самый длительный этап. Он охватывает период от времен Аристотеля до начала ХV в. Второй – это этап классической физики. Его связывают с одним из основателей точного естествознания Галилео Галилеем и основоположником классической физики Исааком Ньютоном. К числу фундаментальных достижений физики при завершении этого этапа относится формирование немеханической картины мира и радикальное изменение взглядов на структуру физической реальности, связанное с построением Максвеллом теории электромагнитного поля. Третий этап возник на рубеже XIХ и ХХ веков. Это этап современной физики. Он открывается трудами немецкого физика Макса Планка(1858-1947), который вошёл в историю как один из основоположников квантовой теории.

Квантовая механика задает новое понимание сложности, объединяющее дискретность и непрерывность, системность и структурность и является одной из основ современного физического мира.

Для характеристики прерывного и непрерывного в структуре материи следует также упомянуть единство корпускулярных и волновых свойств всех частиц и фотонов. Единство корпускулярных и волновых свойств материальных объектов представляет собой одно из фундаментальных противоречий современной физики и конкретизируется в процессе дальнейшего познания микроявлений. Изучение процессов макромира показали, что прерывность и непрерывность существуют в виде единого взаимосвязанного процесса. При определенных условиях макромира микрообъект может трансформироваться в частицу или поле и проявлять соответствующие им свойства.


Введение

В философском понимании мира понятие материи является одним из основных, ибо все его мировоззренческое содержание связано с раскрытием всеобщих свойств, законов, структурных отношений, движения и развития материи во всех ее формах как природных, так и социальных.

Материя (лат. materia – вещество) – это философская категория для обозначения объективной реальности, которая дана человеку; которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них .

В физике понятие материи – также центральное, поскольку физика изучает основные свойства вещества и поля, типы фундаментальных взаимодействий, законы движения различных систем (простые механические системы, системы с обратной связью, самоорганизующиеся системы) и т.д. Эти свойства и законы определенным образом проявляются в технических, биологических и социальных системах, в силу чего физика широко используется для объяснения происходящих в них процессов. Все это сближает философское понимание материи и физическое учение о ее строении и свойствах.

Представления о строении материи находят свое выражение в борьбе двух концепций: дискретности (прерывности) - корпускулярная концепция, и континуальности (непрерывности) - континуальная концепция.

Корпускулярная концепция Левкиппа - Демокрита - было основано на дискретности пространственно-временного строения материи, «зернистости» реальных объектов. Оно отражало уверенность человека в возможности деления материальных объектов на части лишь до определенного предела - до атомов, которые в своем бесконечном разнообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира. При таком подходе необходимым условием движения и сочетания реальных атомов является существование пустого пространства. Таким образом, корпускулярный мир Левкиппа-Демокрита образован двумя фундаментальными началами - атомами и пустотой, а материя при этом обладает атомистической структурой.

Другое представление: континуальная концепция Анаксагора - Аристотеля - базировалось на идее непрерывности, внутренней однородности, "сплошности" и, по-видимому, было связано с непосредственными чувственными впечатлениями, которые производят вода, воздух, свет и т.п. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя не оставляет пустоты внутри себя.


ДИСКРЕТНОСТЬ В КВАНТОВОЙ МЕХАНИКЕ

Дискретность в физику введена давно. В частности, она отражает идею атомно-молекулярного строения вещества. Демокрит (300 г. до н.э.) писал, что начало Вселенной - атомы и пустота, все же остальное существует лишь во мнении. Миров бесчисленное множество, и они имеют начало и конец во времени. И ничто не возникает из небытия, не разрешается в небытие. И атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля. Дело в том, что последние суть соединения некоторых атомов. Атомы же не поддаются никакому воздействию и неизменяемы вследствие твердости .

Физика описывает материю как нечто, существующее в пространстве и во времени (в пространстве-времени) - представление, идущее от Ньютона (пространство - вместилище вещей, время - событий); либо как нечто, само задающее свойства пространства и времени - представление, идущее от Лейбница и, в дальнейшем, нашедшее выражение в общей теории относительности Эйнштейна. Изменения во времени, происходящие с различными формами материи, составляют физические явления. Основной задачей физики является описание свойств тех или иных видов материи и её взаимодействия. Основными формами материи в физике являются элементарные частицы и поле.



Публикации по теме